3.579 \(\int \frac {\sqrt {a+b x}}{\sqrt {c+d x}} \, dx\)

Optimal. Leaf size=73 \[ \frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} d^{3/2}} \]

[Out]

-(-a*d+b*c)*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))/d^(3/2)/b^(1/2)+(b*x+a)^(1/2)*(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {50, 63, 217, 206} \[ \frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} d^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x]/Sqrt[c + d*x],x]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x])/d - ((b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(Sqrt
[b]*d^(3/2))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x}}{\sqrt {c+d x}} \, dx &=\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{2 d}\\ &=\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{b d}\\ &=\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{b d}\\ &=\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} d^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.31, size = 103, normalized size = 1.41 \[ \frac {b \sqrt {d} \sqrt {a+b x} (c+d x)-(b c-a d)^{3/2} \sqrt {\frac {b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b c-a d}}\right )}{b d^{3/2} \sqrt {c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x]/Sqrt[c + d*x],x]

[Out]

(b*Sqrt[d]*Sqrt[a + b*x]*(c + d*x) - (b*c - a*d)^(3/2)*Sqrt[(b*(c + d*x))/(b*c - a*d)]*ArcSinh[(Sqrt[d]*Sqrt[a
 + b*x])/Sqrt[b*c - a*d]])/(b*d^(3/2)*Sqrt[c + d*x])

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 235, normalized size = 3.22 \[ \left [\frac {4 \, \sqrt {b x + a} \sqrt {d x + c} b d - {\left (b c - a d\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right )}{4 \, b d^{2}}, \frac {2 \, \sqrt {b x + a} \sqrt {d x + c} b d + {\left (b c - a d\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right )}{2 \, b d^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(b*x + a)*sqrt(d*x + c)*b*d - (b*c - a*d)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*
d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x))/(b*d^2), 1/2*(
2*sqrt(b*x + a)*sqrt(d*x + c)*b*d + (b*c - a*d)*sqrt(-b*d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*
x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)))/(b*d^2)]

________________________________________________________________________________________

giac [A]  time = 1.58, size = 97, normalized size = 1.33 \[ \frac {b {\left (\frac {{\left (b c - a d\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d} d} + \frac {\sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \sqrt {b x + a}}{b d}\right )}}{{\left | b \right |}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

b*((b*c - a*d)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*d) + sqrt(b
^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)/(b*d))/abs(b)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 107, normalized size = 1.47 \[ -\frac {\left (-a d +b c \right ) \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \ln \left (\frac {b d x +\frac {1}{2} a d +\frac {1}{2} b c}{\sqrt {b d}}+\sqrt {b d \,x^{2}+a c +\left (a d +b c \right ) x}\right )}{2 \sqrt {b x +a}\, \sqrt {d x +c}\, \sqrt {b d}\, d}+\frac {\sqrt {b x +a}\, \sqrt {d x +c}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)/(d*x+c)^(1/2),x)

[Out]

(b*x+a)^(1/2)*(d*x+c)^(1/2)/d-1/2*(-a*d+b*c)/d*((b*x+a)*(d*x+c))^(1/2)/(b*x+a)^(1/2)/(d*x+c)^(1/2)*ln((b*d*x+1
/2*a*d+1/2*b*c)/(b*d)^(1/2)+(b*d*x^2+a*c+(a*d+b*c)*x)^(1/2))/(b*d)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 3.88, size = 261, normalized size = 3.58 \[ \frac {\frac {\left (2\,a\,d+2\,b\,c\right )\,{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^3}{d^2\,{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^3}+\frac {\left (2\,c\,b^2+2\,a\,d\,b\right )\,\left (\sqrt {a+b\,x}-\sqrt {a}\right )}{d^3\,\left (\sqrt {c+d\,x}-\sqrt {c}\right )}-\frac {8\,\sqrt {a}\,b\,\sqrt {c}\,{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^2}{d^2\,{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^2}}{\frac {{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^4}{{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^4}+\frac {b^2}{d^2}-\frac {2\,b\,{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^2}{d\,{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^2}}+\frac {2\,\mathrm {atanh}\left (\frac {\sqrt {d}\,\left (\sqrt {a+b\,x}-\sqrt {a}\right )}{\sqrt {b}\,\left (\sqrt {c+d\,x}-\sqrt {c}\right )}\right )\,\left (a\,d-b\,c\right )}{\sqrt {b}\,d^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^(1/2)/(c + d*x)^(1/2),x)

[Out]

(((2*a*d + 2*b*c)*((a + b*x)^(1/2) - a^(1/2))^3)/(d^2*((c + d*x)^(1/2) - c^(1/2))^3) + ((2*b^2*c + 2*a*b*d)*((
a + b*x)^(1/2) - a^(1/2)))/(d^3*((c + d*x)^(1/2) - c^(1/2))) - (8*a^(1/2)*b*c^(1/2)*((a + b*x)^(1/2) - a^(1/2)
)^2)/(d^2*((c + d*x)^(1/2) - c^(1/2))^2))/(((a + b*x)^(1/2) - a^(1/2))^4/((c + d*x)^(1/2) - c^(1/2))^4 + b^2/d
^2 - (2*b*((a + b*x)^(1/2) - a^(1/2))^2)/(d*((c + d*x)^(1/2) - c^(1/2))^2)) + (2*atanh((d^(1/2)*((a + b*x)^(1/
2) - a^(1/2)))/(b^(1/2)*((c + d*x)^(1/2) - c^(1/2))))*(a*d - b*c))/(b^(1/2)*d^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a + b x}}{\sqrt {c + d x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)/(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*x)/sqrt(c + d*x), x)

________________________________________________________________________________________